125+12.5x-0.30x^2=

Simple and best practice solution for 125+12.5x-0.30x^2= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 125+12.5x-0.30x^2= equation:


Simplifying
125 + 12.5x + -0.30x2 = 0

Solving
125 + 12.5x + -0.30x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
-0.30 the coefficient of the squared term: 

Divide each side by '-0.30'.
-416.6666667 + -41.66666667x + x2 = 0

Move the constant term to the right:

Add '416.6666667' to each side of the equation.
-416.6666667 + -41.66666667x + 416.6666667 + x2 = 0 + 416.6666667

Reorder the terms:
-416.6666667 + 416.6666667 + -41.66666667x + x2 = 0 + 416.6666667

Combine like terms: -416.6666667 + 416.6666667 = 0.0000000
0.0000000 + -41.66666667x + x2 = 0 + 416.6666667
-41.66666667x + x2 = 0 + 416.6666667

Combine like terms: 0 + 416.6666667 = 416.6666667
-41.66666667x + x2 = 416.6666667

The x term is -41.66666667x.  Take half its coefficient (-20.83333334).
Square it (434.0277781) and add it to both sides.

Add '434.0277781' to each side of the equation.
-41.66666667x + 434.0277781 + x2 = 416.6666667 + 434.0277781

Reorder the terms:
434.0277781 + -41.66666667x + x2 = 416.6666667 + 434.0277781

Combine like terms: 416.6666667 + 434.0277781 = 850.6944448
434.0277781 + -41.66666667x + x2 = 850.6944448

Factor a perfect square on the left side:
(x + -20.83333334)(x + -20.83333334) = 850.6944448

Calculate the square root of the right side: 29.166666673

Break this problem into two subproblems by setting 
(x + -20.83333334) equal to 29.166666673 and -29.166666673.

Subproblem 1

x + -20.83333334 = 29.166666673 Simplifying x + -20.83333334 = 29.166666673 Reorder the terms: -20.83333334 + x = 29.166666673 Solving -20.83333334 + x = 29.166666673 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '20.83333334' to each side of the equation. -20.83333334 + 20.83333334 + x = 29.166666673 + 20.83333334 Combine like terms: -20.83333334 + 20.83333334 = 0.00000000 0.00000000 + x = 29.166666673 + 20.83333334 x = 29.166666673 + 20.83333334 Combine like terms: 29.166666673 + 20.83333334 = 50.000000013 x = 50.000000013 Simplifying x = 50.000000013

Subproblem 2

x + -20.83333334 = -29.166666673 Simplifying x + -20.83333334 = -29.166666673 Reorder the terms: -20.83333334 + x = -29.166666673 Solving -20.83333334 + x = -29.166666673 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '20.83333334' to each side of the equation. -20.83333334 + 20.83333334 + x = -29.166666673 + 20.83333334 Combine like terms: -20.83333334 + 20.83333334 = 0.00000000 0.00000000 + x = -29.166666673 + 20.83333334 x = -29.166666673 + 20.83333334 Combine like terms: -29.166666673 + 20.83333334 = -8.333333333 x = -8.333333333 Simplifying x = -8.333333333

Solution

The solution to the problem is based on the solutions from the subproblems. x = {50.000000013, -8.333333333}

See similar equations:

| 4(3x-3)+7=3x+15 | | 6t-6=18 | | 2(3x+5)-4(x-5)=2 | | 6t-=18 | | 0=x(7-x) | | 5x^2+8x=-2 | | 6-4x+12=10 | | -3(x-2)=0.6(x+1) | | 10x=x+54 | | 3(x-5)-4=2 | | 4a+1+2a-13=0 | | 25x^2-25x-100=0 | | 2x^2-2x-10=0 | | 2x+12=8x-18 | | 3(x-5)-4=12 | | 2a(y-7)=8 | | (6*5)+42= | | 6(x+2)=(6x+12) | | 6x+8=3x+20 | | 3x+2x=40 | | 10d+1=9d+5 | | 5x^2-4x-20=0 | | 8x=-88 | | (x-2)-2=0 | | 7x+7+4y=112 | | x^2-x+11=0 | | 3x-10+2x=70 | | 3x+93=9x+15 | | 2x+11=5x+2 | | x^2+x-0.5=0 | | 7x+2x=8x-10 | | 4x^3-2x^2=0 |

Equations solver categories